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Motivation

Suppose you �ip a fair coin 100 times and recorded 64

heads and 36 tails.

The sample percentage of heads is 0.64, but P (heads) = 0.5.

A priori of �ipping the coin, we believe it to be fair. We

can use this.
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Motivation cont.

Nate Silver used Bayesian statistics to

predict the results of the 2008 presidential election and got

49 out of the 50 states correct.

predict the results of the 2012 presidential election and got

50 out of the 50 states correct.
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Bayesian Inference

Bayesian inference uses Bayes rule to obtain a posterior

distribution.

A priori information speci�ed through a prior distribution,

denoted π(θ).

Likelihood function, denoted f(y|θ), speci�ed by the data.

f(θ|y) =
f(y|θ)π(θ)

f(y)
=

f(y|θ)π(θ)∫
Θ f(y|θ)π(θ)dθ

∝ f(y|θ)π(θ)

f(θ|y) is the posterior distribution. It is an update of π(θ)
after seeing y.
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Recognizable Posteriors

Conjugate priors ensure known posteriors.

Beta�Binomial, Normal�Normal, and Gamma�Poisson are

examples of conjugate priors.

Typically, known posteriors are not obtainable and so we

discuss what to do about this.
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Gibbs Sampling

Posterior distribution is recognizable, but can not sample

directly from it due to reliance on other parameters.

If θ is our parameter of interest with length r, i.e. we have
r parameters of interest, then the Gibbs sampler algorithm
is as follows:

o Given initial values θ(0), set t = 1.

o Sample θ
(t)
i from f(θi|θ(−i),y) ∝ f(y|θ)π(θi|θ(−i)) for

i = 1, ..., r and increment t by 1.

o Repeat s times and obtain dependent sequence of samples

{θ(1), ...,θ(s)}.
This sample acts as draws from true posterior distribution.

By weak law of large numbers,

1

s

s∑
i=1

θ(i) → E[θ|y].
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Metropolis�Hastings

The posterior distribution f(θ|y) not of any known form.

So how to obtain the sequence of samples {θ(1), ...,θ(s)} like
in Gibbs sampling?

Intuitively, include new θ? if its posterior density is greater
than current θ(t), else accept it with some probability r.

o r = f(θ?|y)
f(θ(t)|y)

J(θ(t)|θ?)
J(θ?|θ(t))

= f(y|θ?)π(θ?)
f(y|θ(t))π(θ(t))

J(θ(t)|θ?)
J(θ?|θ(t))

Propose θ? from some proposal distribution, denoted Jθ.

o Use this proposal distribution to calculate
J(θ(t)|θ?)
J(θ?|θ(t))

in r

above. This is the correction factor, in case θ? is more likely

to be proposed than θ(t). Otherwise, θ? will be
over�represented in our sequence.

Chase Joyner Bayesian Inference and Sampling Techniques



Metropolis�Hastings cont.

The Metropolis�Hastings algorithm is as follows:

1 Given initial values θ(0), set t = 1.

2 Propose θ? from proposal distribution Jθ.

3 Compute acceptance ratio

r = f(θ?|y)

f(θ(t)|y)

J(θ(t)|θ?)

J(θ?|θ(t))
= f(y|θ?)π(θ?)

f(y|θ(t))π(θ(t))

J(θ(t)|θ?)

J(θ?|θ(t))
.

4 Set θ(t+1) = θ? with probability min{1, r}, θ(t+1) = θ(t)

otherwise.

5 Increment t by 1 and return to step 2.

The proposal distribution greatly a�ects the chain

{θ(1), ...,θ(s)}. What to do if a nice proposal distribution is

hard to �nd?
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Generalized Linear Models

Three major components of a GLM:

Random component: conditional distribution of Yi given
covariates Xi, which is a member of the exponential family,

i.e.

f(yi) = exp

{
yiθi − b(θi)
ai(φ)

+ c(yi, φ)

}
where θi depends on the covariates.

Linear predictor: ηi = XT
i β.

Link function: g(µi) = XT
i β, where g is di�erentiable and

invertible.
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Bayesian Iterative Re�weighted Least Squares

In the situation where covariates are included, β becomes

an unknown parameter of interest. It can be di�cult to

�nd a good proposal distribution for β.

Placing a normal prior N(a,R) on β, the posterior
distribution of β takes form

f(β) ∝ exp

{
−1

2
(β − a)′R−1(β − a) +

∑
i

yiθi − b(θi)
φ

}
.

Approximating this posterior distribution would be a good

choice for the proposal distribution.
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Bayesian Iterative Re�weighted Least Squares cont.

Consider a transformation of the data and weight matrix:

ỹi(β) = ηi + (yi − µi)g′(µi) and Wi(β) =
1

b′′(θi)g′(µi)2
.

Carrying out a second order Taylor expansion of the

likelihood term ∑
i

yiθi − b(θi)
φ

about β(t−1) results in an approximation of f(β) to be a

normal distribution with mean and covariance

m(t) = C(t) ×
(

R−1a +
1

φ
X′W(β(t−1))ỹ(β(t−1))

)
C(t) =

(
R−1 +

1

φ
X′W(β(t−1))X

)−1

.

This means Jβ
d
= N(m(t),C(t)).
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Bayesian Iterative Re�weighted Least Squares cont.

The analogous Bayesian derivation for this proposal distribution

can be thought of as

Specify the prior for β to be N(a,R).

The likelihood function for the transformed observations is

ỹ(β(t−1)) ∼ N(Xβ,W−1(β(t−1))).

Combine this prior and likelihood to obtain an approximate

'posterior' distribution for β to be used as the proposal

distribution Jβ.

Chase Joyner Bayesian Inference and Sampling Techniques



Bayesian Iterative Re�weighted Least Squares cont.

Here we summarize Bayesian IRWLS:

1 Given initial values β(0), set t = 1.

2 Propose β? from proposal distribution Jβ
d
= N(m(t),C(t)).

3 Compute acceptance ratio r.

4 Set β(t+1) = β? with probability min{1, r}, β(t+1) = β(t)

otherwise.

5 Increment t by 1 and return to step 2.

It should be noted that in step 3, the correction factor is

necessary.
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Simulation 1 � Gibbs Sampling

We let Y1, ..., Yn be a random sample from N(µ, σ2).

Specify the following two priors

µ|σ2 ∼ N(µ0, σ
2/n0) and σ2 ∼ IG(α/2, β/2).

Posterior distributions become

µ|σ2,Y ∼ N
(
ny + n0µ0

n+ n0
,

σ2

n+ n0

)
σ2|Y ∼ IG

(
n+ α

2
,

∑n
i=1 y

2
i + n0µ

2
0 + β

2
− (ny + n0µ0)2

2(n+ n0)

)
.
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Simulation 1 � Results

n = 250, 1000 data sets, 10000 iterations each.

Gibbs Sampling

Parameter True values Estimates Std. Error

µ 2.3 2.2965 0.05684

σ2 0.8 0.8117 0.07305

Table: Results of Gibbs sampling
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Simulation 2 � Metropolis�Hastings

We let Y1, ..., Yn be a random sample from N(µ, σ2).

Specify the following two priors

µ|σ2 ∼ N(µ0, σ
2/n0) and σ2 ∼ IG(α/2, β/2).

Now assume that the posterior distributions are not

obtainable (we saw in Gibbs sampling that they are).
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Simulation 2 � Metropolis�Hastings cont.

It can easily be shown that the posterior distributions are

f(µ|σ2,Y) ∝ exp

{
− 1

2σ2

[
n∑
i=1

(yi − µ)2 + n0(µ− µ0)2

]}

and

f(σ2|µ,Y) ∝
(
σ2
)−n+α+1

2
−1

exp

{
− 1

2σ2

[
n∑
i=1

(yi − µ)2

+ n0(µ− µ0)2 + β

]}
.
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Simulation 2 � Results

n = 250, 1000 data sets, 10000 iterations each.

Metropolis�Hastings

Parameter True values Estimates Std. Error

µ 2.3 2.2940 0.05817

σ2 0.8 0.8148 0.07989

Table: Results of Metropolis�Hastings

Acceptance rate for µ and σ2 both roughly 22%.
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Simulation 3 � Bayesian IRWLS

Observations are Cij ∼ Gamma(α, µij/α), ith person in jth
group, i = 1, ..., cj , j = 1, ..., J .

Log link logµij = X′ijβ.

Independent prior distributions

β ∼MVN(β0,Σ) and α ∼ Exp(λ).
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Simulation 3 � Bayesian IRWLS cont.

The joint posterior distribution is

f(α,β|C) ∝
J∏
j=1

cj∏
i=1

exp

{
−e−X

′
ijβCij −X′ijβ

1/α
+ c(1/α,C)

}
·

exp

{
−1

2
(β − β0)′Σ−1(β − β0)

}
· exp

{
−α
λ

}
,

where c(1/α,C) = α logα− log Γ (α) + (α− 1) log Cij .
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Simulation 3 � Bayesian IRWLS cont.

From the joint posterior distribution, we see that the posterior

for α is

f(α|β,C) ∝ exp {αγ +N(α logα− log Γ(α))} ,

where N =
∑J

j=1 cj and

γ =

J∑
j=1

cj∑
i=1

−e−X
′
ijβCij −

J∑
j=1

cj∑
i=1

X′ijβ +

J∑
j=1

cj∑
i=1

log Cij −
1

λ
.

The posterior distribution for β is

f(β|α,C) ∝ exp

−α
 J∑
j=1

cj∑
i=1

e−X
′
ijβCij +

J∑
j=1

cj∑
i=1

X′ijβ

 −
1

2
(β − β0)′Σ−1(β − β0)

}
.
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Simulation 3 � Bayesian IRWLS cont.

We now have the posterior distributions. We must

implement Metropolis�Hastings.

The proposal distribution used for α was

Jα
d
= exp

{
N(logα(t−1), σ2)

}
.

We implemented Bayesian IRWLS to propose a new β. It
can be shown that

W(β) = IN×N

C̃ij(β) = X′ijβ + (Cij − exp(X′ijβ))
1

exp(X′ijβ)
.

Chase Joyner Bayesian Inference and Sampling Techniques



Simulation 3 � Bayesian IRWLS cont.

Then, the proposal distribution for β is Jβ
d
= N(m(t),C(t)),

where

m(t) =
(
Σ−1 + αX′X

)−1 ×
(
Σ−1β0 + αX′C̃(β(t−1))

)
and

C(t) =
(
Σ−1 + αX′X

)−1
.
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Simulation 3 � Results

n = 100, 1000 data sets, 10000 iterations each.

Metropolis�Hastings

Parameter True values Estimates

α 5 4.992035

β (−3, 2, 1.1) (−2.999, 2.0002, 1.0995)

Table: Results of BIRWLS

Acceptance rate for α was 23.4% and the rate for β was 97.5%.
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Conclusion

We introduced Bayesian statistics and popular sampling

techniques: Gibbs Sampling and Metropolis�Hastings.

Bayesian Iterative Re�weighted Least Squares is an

adaptive version of Metropolis�Hastings that improves the

acceptance rates in a good way.

High acceptance rates are not always good, which can be

seen in regular Metropolis�Hastings where the target

acceptance rate is between 20 and 50%.

Great resource: A First Course in Bayesian Statistical

Methods by Peter Ho�, 2010.

Great resource: Sampling from the posterior distribution in

generalized linear mixed models by Dani Gamerman, 1996.
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